Singular Hopf bifurcation in a differential equation with large state-dependent delay

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Hopf bifurcation in a differential equation with large state-dependent delay.

We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawt...

متن کامل

Stability and Hopf Bifurcation in Differential Equations with One Delay

A class of parameter dependent differential equations with one delay is considered. A decomposition of the parameter space into domains where the corresponding characteristic equation has a constant number of zeros with positive real part is provided. The local stability analysis of the zero solution and the computation of all Hopf bifurcation points with respect to the delay is given.

متن کامل

Subcritical Hopf bifurcation in dynamical systems described by a scalar nonlinear delay differential equation.

A subcritical Hopf bifurcation in a dynamical system modeled by a scalar nonlinear delay differential equation is studied theoretically and experimentally. The subcritical Hopf bifurcation leads to a significant domain of bistability where stable steady and time-periodic states coexist.

متن کامل

Delayed feedback control of a delay equation at Hopf bifurcation

We embark on a case study for the scalar delay equation ẋ(t) = λf(x(t− 1)) + b−1(x(t− θ) + x(t− θ− p/2)) with odd nonlinearity f , real nonzero parameters λ, b, and three positive time delays 1, θ, p/2. We assume supercritical Hopf bifurcation from x ≡ 0 in the well-understood single-delay case b = ∞. Normalizing f ′(0) = 1, branches of constant minimal period pk = 2π/ωk are known to bifurcate ...

متن کامل

Stability and Hopf Bifurcation for a Cell Population Model with State-Dependent Delay

We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for the global asymptotic stability of the trivial steady state is obtained using a Lyapunov–Razumikhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

سال: 2014

ISSN: 1364-5021,1471-2946

DOI: 10.1098/rspa.2013.0596